Background Image
Table of Contents Table of Contents
Previous Page  1265 / 1278 Next Page
Information
Show Menu
Previous Page 1265 / 1278 Next Page
Page Background

CATALOGUE >

Release 8.8

APPENDIX >

Technical information about products

a

APPENDIX

Calculation:

Example 3: Free fall impact

Application data:

h = 0,35 m

m = 5 kg

S = 0.01 m

first hypothesis SA 1210

C = 1500 cycles/h

v = √ (2g . h) √ (2 . 9,81 . 0,35) = 2,6 m/s

E

k

= m . g . h = 5 . 9,81 . 0,35 = 17,2 Nm

Consider the shock absorber with the lowest E

t

but superior to 17.2 Nm:

mod. SA 1412 S = 0.012 m

E

d

= F . S = m . g . s = 5 . 9,81 . 0,012 = 0,6 Nm

E

t

= E

k

+ E

d

= 17,2 + 0,6 = 17,8 Nm

E

tc

= E

t

. C = 17,8 . 1500 = 26700 Nm/h

Me = 2E

t

= 2 . 17,5 = 5 Kg

v

2

2,6

2

Calculation:

Example 4: Vertical impact downwards with propelling force

The adequate shock absorber to use in this case is Mod. SA 2725 according

to the technical data, where we find that E

t

(max) = 147 Nm,

E

tc

(max) = 72000 Nm/h and Me (max) = 270 kg.

The adequate shock absorber to use in this case is Mod. SA 1412 according

to the technical data, where we find that E

t

(max) = 20 Nm,

E

tc

(max) = 33000 Nm/h and Me (max) = 40 kg.

Application data:

m = 50 kg

S = 0.025 m

P = 6 bar

D = 63 mm

C = 600

cycles

/h

v = 1,0 m/s

Calculation:

Example 5: Vertical impact upwards with propelling force

Application data:

m = 50 kg

h = 0.3 m

S = 0.025 m

first hypothesis

Mod. SA 2525

P = 6 bar =0,6 MPa

D = 63 mm

C = 600 cycles/h

v = 1,0 m/s

E

k

= mv

2

= 50 . 1

2

= 25 Nm

2 2

Consider the shock absorber with the lowest E

t

but superior to 25 Nm:

mod. SA 2015 S=0.015 m

E

d

= F . S = ( D

2

.

π

. P . g/100 – m . g) . S = ( 63

2

.

π

6 . 9,81/100 – 50 . 9,81) . 0,015 = 20,1 Nm

4

4

E

t

= E

k

+ E

d

= 25 + 20,1 = 45,7 Nm

E

tc

= E

t

. C = 45,1 . 600 = 27060 Nm/h

Me = 2

E

t

= 2 . 45,7 = 91,4 Kg

v

2

1

2

E

k

= mv

2

= 50 . 1

2

= 25 Nm

2 2

E

d

= F . S = (m . g + D

2

.

π

. P . g/100 ) . S = (50 . 9,81 + 63 .

π

. 6 . 9,81/100) . 0,025 = 58,1 Nm

4

4

E

t

= E

k

+ E

d

= 25 + 58,1 = 83,1 Nm

E

tc

= E

t

. C = 83,1 . 600 = 49860 Nm/h

Me = 2

E

t

= 2 . 84 = 168 Kg

v

2

1

2

The adequate shock absorber to use in this case is Mod. SA 2015 according

to the technical data, where we find that E

t

(max) = 59 Nm,

E

tc

(max ) = 38000 Nm/h and Me (max )= 120 kg.

Calculation:

Example 6: Inclined impact

Application data:

m = 10 kg

h = 0,3 m

S = 0.015 m

= 30°

C = 600 cycles/h

v = √ (2g . h) √ (2 . 9,81 . 0,3) = 2,43 m/s

E

k

= m . g . h 10 . 9,81 . 0,3 = 29,4 Nm

E

d

= F . S = m . g . sin

α

. s = 10 . 9,81 . sin30° . 0,015 = 10 . 9,81 . 0,5 . 0,015 = 0,7 Nm

E

t

= E

k

+ E

d

= 29,4 + 0,7 = 30,1 Nm

E

tc

= E

t

. C = 30,1 . 600 = 18060 Nm/h

Me = 2

E

t

= 2 . 30,1 = 10,2 Kg

v

2

2,43

2a

The adequate shock absorber to use in this case is Mod. SA 2015 according

to the technical data, where we find that E

t

(max) = 59 Nm,

E

tc

(max) = 38000 Nm/h and Me (max) = 120 kg.

a

/3.05