Background Image
Table of Contents Table of Contents
Previous Page  1264 / 1278 Next Page
Information
Show Menu
Previous Page 1264 / 1278 Next Page
Page Background

CATALOGUE >

Release 8.8

APPENDIX >

Technical information about products

a

APPENDIX

Symbols description

Dimensioning guide: formulas and examples

Symbol

Unit

Description

m

friction coefficient

a

(rad)

angle of incline

q

(rad)

side load angle

w

(rad/s)

angular velocity

A

(m)

width

B

(m)

thickness

C

(/hr)

impact cycles per hour

D

(cm)

cylinder diameter

d

(cm)

piston rod diameter

E

d

(Nm)

drive energy per cycle

E

k

(Nm)

kinetic energy per cycle

E

t

(Nm)

total energy per cycle

E

tc

(Nm)

total energy per hour

F

(N)

propelling force

Symbol

Unit

Description

Fm (N)

maximum shock force

g

(m/s

2

)

gravity acceleration (9.81 m/s

2

)

h

(m)

hight

m

(kg)

mass to be decelerated

Me

(kg)

effective mass

P

(bar)

operating pressure

R

(m)

radius

Rs

(m)

shock absorber mounting distance

from rotation center

S

(m)

stroke (shock absorber)

T

(Nm)

driving torque

t

(s)

deceleration time

v

(m/s)

velocity of impact mass

vs

(m/s)

impact velocity at shock absorber

In order to select the correct dimensions of Shock absorbers the following

parameters are needed:

- Weight of the impact object

m (kg)

- Impact speed

v

(m/s)

- Propelling or thrust force

F

(N)

- No. of impact cycles per hour C (/hr)

Some formulas

5. Cylinder’s traction force

F = D

2

· π

· P · g/100

4

6. Cylinder’s thrust force

F = (D

2

- d

2

) · π

· P · g/100

4

7. Maximum shock force (approx.)

Fm = 1.2 E

t

/S

8. Total energy consumption per hour

E

tc

=

E

t

· C

9. Mass

Me = 2E

t

/v

2

Some formulas

1. Kinetic energy

E

k

= mv

2

/2

2. Drive energy

E

d

= F · S

3. Total energy

E

t

= E

k

+E

d

4. Free fall speed

v = √ (2g*h)

Calculation:

Example 1: Horizontal impact

Application data:

v = 1.0 m/s

m = 50 kg

S = 0.01 m

C = 1500 cycles/h

The adequate Shock Absorber to use in this case is Mod. SA 2015

according to the technical data where we find that E

t

(max) = 59 Nm,

E

tc

(max) = 38000 Nm/h and Me (max) = 120 kg.

E

k

= mv

2

= 50 . 1

2

= 25 Nm

2 2

E

t

= Ek = 25 Nm

E

tc

=

E

t

. C = 25 . 1500 = 37500 Nm/h

Me = 2

E

t

= 2 . 25 = 50 kg

v

2

1

2

Example 2: Horizontal impact with propelling force

Application data:

m = 40 kg

P = 6 bar

S = 0.01 m first hypothesis SA 1210

v = 1.2 m/s

D = 50 mm

C = 780 cycles/h

To facilitate the calculation, the pressure in the empty

cylinder chamber is not considered (safety condition)

Calculation:

The adequate Shock Absorber to use in this case is Mod.SA 2015

according to the technical data where we find that E

t

(max) = 59 Nm,

E

tc

(max) = 38000 Nm/h and Me (max) = 120 kg.

E

k

= mv

2

= 40 . 1,2

2

= 28,8 Nm

2 2

Consider the shock absorber with the lowest E

t

but superior to 28.8 Nm:

mod. SA 2015 S=0.015 m

E

d

= F . S = D

2

.

π . P . g/100 . S = 50

2

. π . 6 . 9,81/100 . 0,015 = 17,3 Nm

4

4

E

t

= E

k

+ E

d

= 28,8 + 17,3 = 46,1 Nm

E

tc

= E

t

. C = 46,1 . 780 = 35958 Nm/h

Me = 2E

t

= 2 . 46,1 = 64,0 Kg

v

2

1,2

2

a

/3.05

Dimensioning guide for Shock Absorbers Series SA