Background Image
Table of Contents Table of Contents
Previous Page  1266 / 1278 Next Page
Information
Show Menu
Previous Page 1266 / 1278 Next Page
Page Background

CATALOGUE >

Release 8.8

ω

ω

APPENDIX >

Technical information about products

a

APPENDIX

Calculation:

Example 7: Horizontal mass on conveyer

The adequate shock absorber to use in this case is Mod. SA 0806

according to the technical data, where we find that E

t

(max) = 3 Nm,

E

tc

(max) = 7000 Nm/h and Me (max) = 6 kg.

Application data:

m = 5 kg

v = 0,5 m/s

µ = 0,25

S = 0.006 m

C = 3000 cycles/h

E

k

= mv

2

= 5 . 0,5

2

= 0,63 Nm

2 2

E

d

= F . S = m . g . µ . s = 5 . 9,81 . 0,25 . 0,006 = 0,07 Nm

E

t

= E

k

+ E

d

= 0,63 + 0,07 = 0,7 Nm

E

tc

= E

t

. C = 0,7 . 3000 = 2100 Nm/h

Me = 2E

t

= 2 . 07 = 5,6 Kg

v

2

0,5

2

Example 8: Horizontal rotating door

Application data:

m = 20 kg

ω

= 2,0 rad/s

T = 20 Nm

Rs = 0,8 m

A = 1,0 m

S = 0,015 m

C = 600 cycles/h

Calculation:

l = m (4A

2

+ B

2

) = 20(4 . 1,0

2

+ 0,05

2

) = 6,67 Kg . m

2

12 12

E

k

= l

ω

2

= 6,67 . 2,0

2

= 13,34 Nm

2 2

θ

= S = 0,015 = 0,019 rad

Rs 0,8

E

d

= T .

θ

= 20 . 0,018 = 0,36 Nm

E

t

= E

k

+ E

d

= 13,34 + 0,36 = 13,7 Nm

E

tc

= E

t

. C = 13,7 . 600 = 8220 Nm/h

v =

ω

. Rs = 2,0 . 0,8 = 1,6 m/s

Me = 2 E

t

= 2 . 13,7 = 10,7 Kg

v

2

1,6

2

The adequate shock absorber to use in this case is Mod. SA 1412

according to the technical data, where we find that E

t

(max) = 20 Nm,

E

tc

(max) = 33000 Nm/h and Me (max) = 40 kg.

Calculation:

Example 9: Horizontal rotating door

Application data:

m = 200 kg

ω

= 1,0 rad/s

T = 100 Nm

R = 0,5 m

Rs = 0,4 m

S = 0,015 m

C = 100 cycles/h

The adequate shock absorber to use in this case is Mod. SA 2015

according to the technical data, where we find that E

t

(max) = 59 Nm,

E

tc

(max) = 38000 Nm/h and Me (max) = 720 kg.

To ensure the lifetime of the shock absorber, the movement of the impact body

must be perpendicular to the shock absorbers axial centre.

Note: The maximum allowable eccentricity

θ

≤ 2,5° (0,044 rad).

Perpendicularity of the load

Load

l = mR

2

= 200 . 0,5

2

= 25 Kg . m

2

2 2

E

k

= l

ω

2

= 25 . 1,0

2

= 12,5 Nm

2 2

θ

= S = 0,015 = 0,0375 rad

Rs 0,4

E

d

= T .

θ

= 100 . 0,0375 = 3,75 Nm

E

t

= E

k

+ E

d

= 12,5 + 3,75 = 16,25 Nm

E

tc

= E

t

. C = 16,25 . 100 = 1625 Nm/h

v =

ω

. Rs = 1,0 . 0,4 = 0,4 m/s

Me = 2 E

t

= 2 . 16,25 = 203 Kg

v

2

0,4

2

a

/3.05