Background Image
Table of Contents Table of Contents
Previous Page  1133 / 1144 Next Page
Information
Show Menu
Previous Page 1133 / 1144 Next Page
Page Background

CATALOGUE >

Version 8.7

ω

ω

a

APPENDICE

Calculs:

Exemple 7: impact horizontal avec une masse convoyée

L'amortisseur de chocs adéquat est le Mod. SA 0806

possédant les caractéristiques suivantes:

E

t

(max) = 3 Nm, E

tc

(max) = 7000 Nm/h et Me (max) = 6 kg.

Données:

m = 5 kg

v = 0,5 m/s

µ = 0,25

S = 0.006 m

C = 3000 coups/h

E

k

= mv

2

= 5 . 0,5

2

= 0,63 Nm

2 2

E

d

= F . S = m . g . µ . s = 5 . 9,81 . 0,25 . 0,006 = 0,07 Nm

E

t

= E

k

+ E

d

= 0,63 + 0,07 = 0,7 Nm

E

tc

= E

t

. C = 0,7 . 3000 = 2100 Nm/h

Me = 2E

t

= 2 . 07 = 5,6 Kg

v

2

0,5

2

Exemple 8: impact horizontal avec une porte en rotation

Données:

m = 20 kg

ω

= 2,0 rad/s

T = 20 Nm

Rs = 0,8 m

A = 1,0 m

S = 0,015 m

C = 600 coups/h

Calculs:

l = m (4A

2

+ B

2

) = 20(4 . 1,0

2

+ 0,05

2

) = 6,67 Kg . m

2

12 12

E

k

= l

ω

2

= 6,67 . 2,0

2

= 13,34 Nm

2 2

θ

= S = 0,015 = 0,019 rad

Rs 0,8

E

d

= T .

θ

= 20 . 0,018 = 0,36 Nm

E

t

= E

k

+ E

d

= 13,34 + 0,36 = 13,7 Nm

E

tc

= E

t

. C = 13,7 . 600 = 8220 Nm/h

v =

ω

. Rs = 2,0 . 0,8 = 1,6 m/s

Me = 2 E

t

= 2 . 13,7 = 10,7 Kg

v

2

1,6

2

L'amortisseur de chocs adéquat est le Mod.SA 1412,

possédant les caractéristiques suivantes:

E

t

(max) = 20 Nm, E

tc

(max) = 33000 Nm/h et Me (max) = 40 kg.

Calculs:

Exemple 9: impact horizontal avec une table en rotation

Données:

m = 200 kg

ω

= 1,0 rad/s

T = 100 Nm

R = 0,5 m

Rs = 0,4 m

S = 0,015 m

C = 100 coups/h

L'amortisseur de chocs adéquat est le Mod. SA 2015

possédant les caractéristiques suivantes:

E

t

(max) = 59 Nm, E

tc

(max) = 38000 Nm/h et Me (max) = 720 kg.

Afin d'optimiser la durée de vie des amortisseurs de chocs, la charge d'impact doit être perpendiculaire

à l'axe de l'amortisseur.

N.B.: L'excentricité maximale admissible est θ ≤ 2,5° (0,044 rad).

Perpendicularité de la charge

Charge

l = mR

2

= 200 . 0,5

2

= 25 Kg . m

2

2 2

E

k

= l

ω

2

= 25 . 1,0

2

= 12,5 Nm

2 2

θ

= S = 0,015 = 0,0375 rad

Rs 0,4

E

d

= T .

θ

= 100 . 0,0375 = 3,75 Nm

E

t

= E

k

+ E

d

= 12,5 + 3,75 = 16,25 Nm

E

tc

= E

t

. C = 16,25 . 100 = 1625 Nm/h

v =

ω

. Rs = 1,0 . 0,4 = 0,4 m/s

Me = 2 E

t

= 2 . 16,25 = 203 Kg

v

2

0,4

2

a

/3.05

03

APPENDICE >

Informations techniques sur les produits